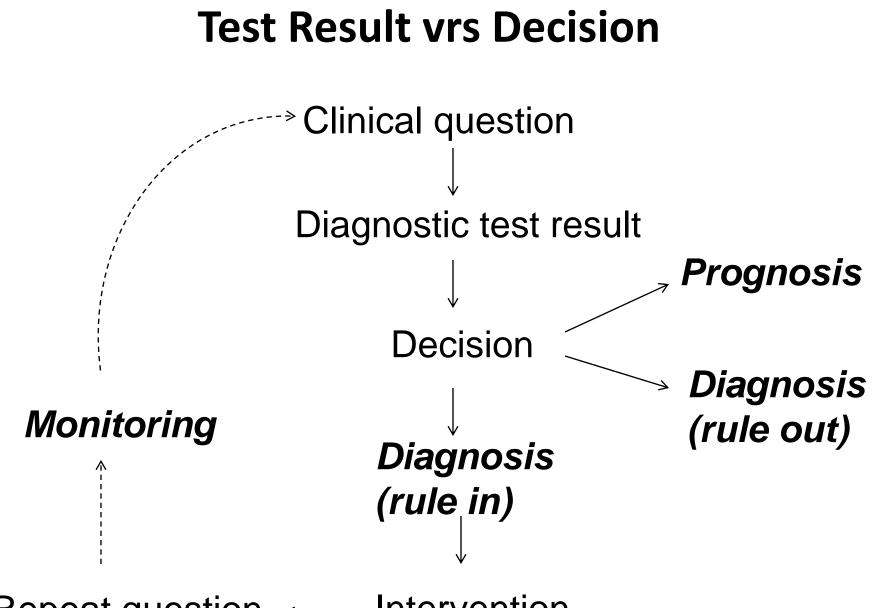
# **Quality Control/Assurance**

Dr. Daniel Gyamfi Dept. of Medical Laboratory Technology Faculty of Allied Health Sciences College of Health Sciences KNUST

# LEARNING OBJECTIVES

After the end of the whole series of lectures, you should be able to:


- Know what quality assurance/control is & its importance in the clinical laboratory
- Know the different phases of clinical laboratory testing process
- Know the types of laboratory errors
- Know quality control at the analytical phase and its types
- Know the use of Levey-Jennings control chart in clinical laboratory
- Know method evaluation in clinical laboratory

• What is quality?

<u>Conformance to the requirements</u> of users or customers and the <u>satisfaction of their needs and</u> <u>expectations</u>

• In laboratory, who are the users?

• What are they requiring from the laboratory?



Repeat question <----- Intervention

## **Roles of Clinical Laboratory Tests**

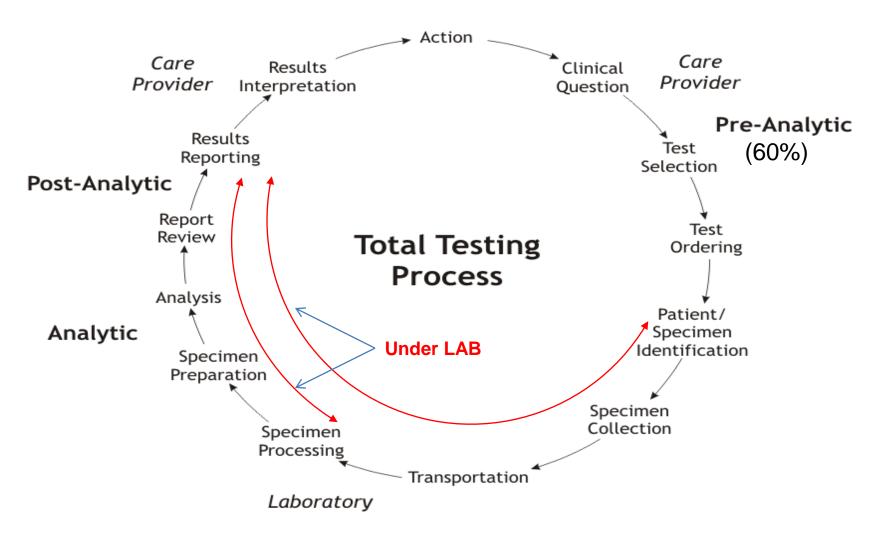
Laboratory tests are important for:

- Diagnosis of diseases (rule in or rule out)
- Monitoring of diseases
- Prognosis of diseases
- Screening of diseases
- Confirmation of previous normal/abnormal test
- Research purposes/education of medical scientists
- Medico-legal purposes

## **Clinical Laboratory Tests**

### Types of Tests

- Core or routine tests
- Specialized tests
- Emergency tests
- Laboratory patients' results are essential: WHY?
   60-70% of <u>all important medical decisions</u> on:
- A. Admissions;
- B. Medications; and
- C. Discharge


Are based on evidence from laboratory results

# **Total Testing Process**

The total laboratory testing process consists of 3 phases:

- **1. Pre-analytical phase:** specimen collection, transport, and processing *(and storage)*
- 2. Analytical phase: testing/analysis of sample
- **3. Post-analytical phase:** test results transmission, interpretation, follow-up, retesting

### **Total Testing Process**



# **Reliability of Laboratory Results**

- To ensure reliability of a laboratory's results, an effective quality assurance system should be implemented and monitored throughout the entire testing process
- What is **quality assurance?**
- And what is quality control?

# **Quality Assurance & Quality Control**

• Quality Assurance (QA): is all of the procedures, actions and activities that take place to ensure that the final results reported by the laboratory are correct/accurate

- Quality Control (QC): refers to the measures that must be included during each assay run <u>to verify that the test is</u> working properly
- "The aim of quality control is simply to ensure that the <u>results</u> generated by the test <u>are correct</u>. However, quality assurance is concerned with much more: that the <u>right test</u> is carried out on the <u>right specimen</u>, and that the <u>right result</u> and <u>right interpretation</u> is delivered to the <u>right person</u> at the <u>right time</u>"

# **Quality Control**

- Quality control: there are two types internal quality control and external quality control (e.g. IEQAS - UK)
- What is internal quality control?
- What is external quality control?

   Proficiency testing/interlaboratory comparison???

# **Quality Control: Terms**

Some terms to understand:

- True value an ideal concept, which cannot be achieved
- Accepted True value The value approximating the 'True Value'; the difference between the two values is negligible
- Error
  - -Error is the discrepancy between the result obtained in the testing process and its 'True Value'/'Accepted True Value' 12

# **Types of Error**

- 1. Pre-analytical error
- 2. Analytical error
- 3. Post-analytical error

# **Pre-Analytical Errors**

- Errors which occur in the pre-analytical phase or before the analysis of the samples
- Contribute to about **75%** of total laboratory errors
- Most difficult to monitor and control since most of them occur beyond the laboratory
- However, through Quality Assurance measures, the laboratory should try to maintain control over these factors

# **Pre-Analytical Errors**

- Errors could come from all the following variables:
  - Patient preparation
  - Patient identification
  - Site selection/preparation
  - Tube/needle selection
  - Tourniquet placement/time
  - Order of draw
  - Specimen labelling/identification
  - Specimen handling/processing
  - Specimen transport



June 14, 2006

THE INFORMED PATIENT By LAURA LANDRO



#### Hospitals Move to Cut Dangerous Lab Errors

Improved Specimen Collection And Efficiency Help Increase Accuracy of Medical Testing June 14, 2006; Page D1

# **Pre-Analytical Errors**

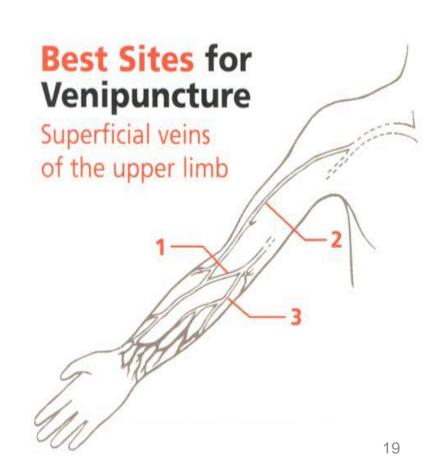
### **Patient preparation**

- Laboratory tests are affected by many factors (diet, alcohol, drugs, smoking, exercise, stress, and posture);
- Example Some tests:
  - Require <u>fasting</u> for at least <u>12 hours</u> prior to venipuncture, e.g glucose (FBS) and Lipid profile
  - have <u>diurnal variations</u>, e.g. cortisol and adrenocorticotropin (ACTH), where the analyte is at its highest level in the morning, and the levels gradually decrease during the course of the day.
- The laboratory must define the instructions and procedures for patient preparation and specimen acquisition
- These should be included in hospital procedure manuals

# **Pre-Analytical Errors**

### **Specimen Identification/Labelling**

- Tubes must be labelled in front of the patient
  - At bedside
  - At phlebotomist chair
- Label must be permanently attached & contain:
  - full name
  - Age
  - Date, time as required e.g. TDM, OGTT
  - Blood collector's initials


### Impact

Recollection, Reanalysis, Misdiagnosis, Labour costs

## **Site Selection**

Common veins used for venipuncture:

- 1. Median Cubital (preferred site)
- 2. Cephalic
- 3. Basilic



# Site preparation

- Cleanse with:
  - 70% Alcohol......why???
- Cleansing should be air-dry
  - Haemolysis
  - Patient discomfort
- Cleansing should be done in circular motion & outward from site

### **Avoid These Sites**

Venipuncture should be avoided from:

- An arm with IV infusion
- Side where mastectomy was performed; lymphostasis affects blood composition
- Area where edema is present
- Scarred or sclerosed veins
- Extremity that appears bruised, reddened, swollen or infected
- Extremity that has a dialysis shunt or fistula
- Above a cannula



### **Needle Selection**

- 19-23 gauge most commonly used\*
- 22-23 gauge in children\*
- Right selection of needle avoids haemolysis
- \*Clinical and Laboratory Standards Institute (CLSI)



### **Tourniquet placement/time**

- Place 3 to 4 inches above the venipuncture site
- Maximum time for tourniquet on arm: 1 minute
- Release tourniquet as soon as blood starts to flow into first tube
- Haemoconcentration & venous stasis after 1 min and up to 3 mins
  - Can increase
    - serum protein & protein-bound analytes (5-15%)
    - lactic acid
- Avoid pumping the fist
  - − ↑K, Phosphate, lactate, ionized calcium
- Reverts to normal within 10 mins after tourniquet removal





### **Order of Draw**

Order of draw (CLSI recommendation):

- Blood culture tube
- Coagulation tube (e.g. citrate, blue stopper)
- Serum tube with or without clot activator, with or without gel (e.g. red stopper)
- Heparin tube with or without gel plasma separator (e.g. green stopper)
- EDTA (e.g. lavender stopper)
- Glycolytic inhibitor tube (e.g. gray stopper)



### **Mixing of specimens**

- Invert tubes a number of times & gently as recommended by the manufacturer immediately after sample collection, examples:
  - Invert SST 5 times
  - Invert sodium citrate tubes 3 to 4 times
  - Other additive tubes invert 8-10 times

#### **Consequences if not mixed**

- Tubes with anticoagulants will clot
- SST tubes will not clot completely
- Specimen will often need to be redrawn
- Improper mixing

Microclots, clotted specimens

Haemolysis

### **Handling of Specimens**

Some samples need to be handled with special care

- Light-sensitive analytes include:
  - Bilirubin
  - Carotene
  - Vitamin A
  - Vitamin B6
- Transport light-sensitive specimen wrapped in Al foil

### **Transportation of Samples**

### Mode of transportation and time

- By Hand or Courier service
  - Adequate packaging/handling to ensure constituent stability for the tests requested
  - Transport conditions too hot/too cold (E.g. In hands, inside pockets, etc)

#### Time is important

 Rapid transport and short storage times improve the reliability of laboratory results

### **Sample Processing**

Allow clot formation: Blood with no coagulation abnormalities clots in 45 min.+/- 15 min

 Blood from patients on anticoagulant therapy or with coagulopathies takes longer to clot

#### Centrifugation

- After complete clotting of sample or maintenance of anticoagulation
- Centrifugation and separation of cells from serum/plasma
- Centrifuge between 1100 and 1300 g for 10 mins for swing head units or 15 mins for fixed angle rotor unit
- Impact: Recentrifugation (delay):
  - ↑K ; ↓Glucose

### **Maintenance of Samples**

#### Maintenance of serum/plasma samples

- Separated serum/plasma should remain at room temperature for no longer than 8 hours
- If assays will not be completed within 8 hours, refrigerate at 2 – 8°C
- If assays are not completed within 48 hours, freeze at -20°C

### Whole Blood

 Plasma/serum should be separated from contact with cells within recommended time limits\*

\*CLSI recommends a maximum limit of 2 hours from time of collection

### **Tube Orientation & Closure**

### **Tube Orientation**

• It is recommended to place tubes of blood in a vertical closure-up position for delivery to laboratory

### **Tube Closure**

- Tubes of blood are to be kept closed at all times
  - $-\uparrow$  in pH due to loss of CO<sub>2</sub>
  - Increase in pH,  $\downarrow$ ionized calcium, acid phosphastase
- Eliminates exogenous contamination of specimen
- Prevents evaporation, spills, aerosols

## **Pre-Analytical Error**

#### Quality assurance measures such as:

- Well developed standard operating procedures (SOP) for sample collection
- Well trained phlebotomy staff/employing qualified professionals (e.g. BMS) or in-service training of staff
- Use of easy patient & specimen identification methods (such as bar code identification?)
- Willingness to be information resource and/or trainers for physicians and floor personnel often involved with specimen collection

## **Post-Analytical error**

- Errors that occur after the analysis of the specimen
  - Incorrect data entry of lab results
  - Physician not notified of a panic or critical value
  - Incorrect interpretation of lab results by physician
  - Incorrect reference values
- Quality Assurance measures must be implemented if problems identified
- NB: Reading assignment: How is reference/normal range established?

## **Analytical Errors**

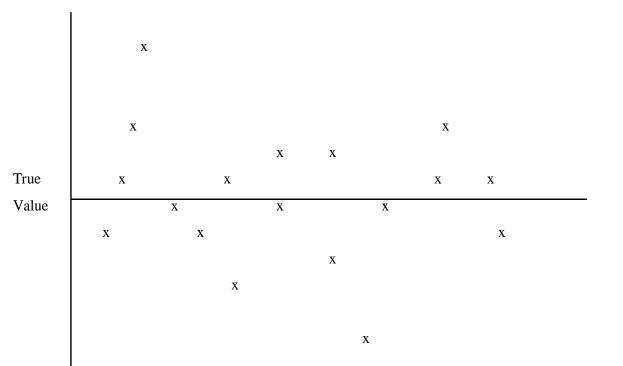
- Errors which occur during the analysis of samples
- It could be classified into two:
  - 1. Random errors/imprecision/scatter
  - 2. Systematic errors/inaccuracy (bias)
- Huge improvement in management of these errors because of technological advancement in laboratory instrumentation and quality control measures

# **Analytical Error**

### **Random Error**

- An error which <u>varies in an unpredictable manner</u> and <u>causes variation in repeated estimates or measurements</u>
- Random errors cause <u>imprecision/scatter</u> in results
- Examples:
  - Faulty technique (incorrect/ variable pipetting, inadequate mixing of sample with reagents, inconsistent incubation)
  - Fluctuating/erratic instruments due to unreliable electricity supply
  - Presence of interfering substances e.g. RBC
  - Dirty glassware & equipment

# **Analytical Error**


### **Random Errors (Cont)**

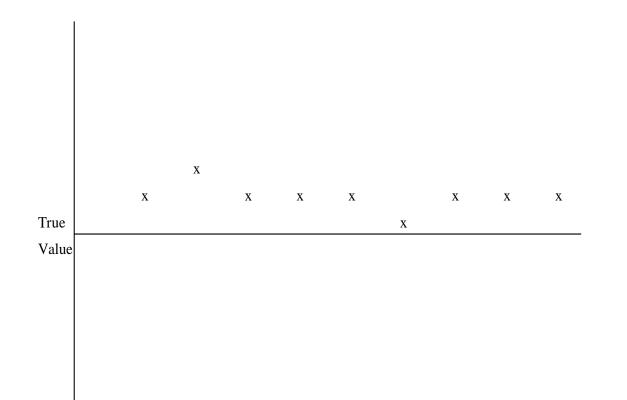
Examples:

- Dirty or finger marked cuvettes or reading absorbance when there are air bubbles
- Heavy work schedules resulting in short cuts or mistakes
- Low workload resulting in loss of concentration

### **Analytical Errors**

#### **Random Errors**



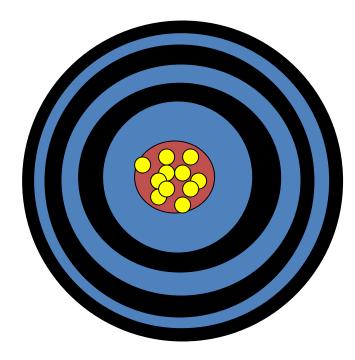

### **Analytical Errors**

#### Systematic Error (SE)

- An error, which in the course of a number of measurements of the same value of a given sample, remains constant (i.e. Constant SE) or varies in a predictable way (i.e. Proportional SE)
- Systematic errors create a characteristic bias in the test results and can be accounted for by applying a correction
- Systematic errors <u>cause inaccuracies in test results</u> Examples:
  - Use of unsatisfactory reagents
  - Incorrect or infrequent calibration of a test method
  - Use of inappropriately prepared, stored or expired control sera/calibrator
  - Reading of tests at incorrect wavelength

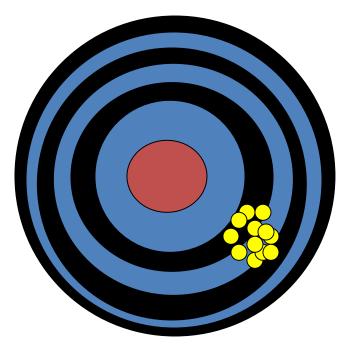
### **Analytical Errors**

#### **Systematic Errors**

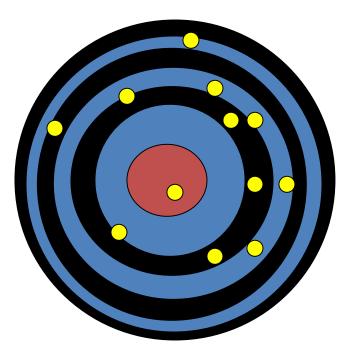



### **Analytical Error**

- Random errors affect precision
  - Precision: Closeness of agreement between quantity values obtained by replicate measurements of a quantity, under specified conditions; thus, how well a series of replicate measurements agree with each other


- Systematic errors affect accuracy
  - Accuracy is the closeness of the agreement between the measured value of an analyte and its 'true' value

### Analytical Error Precise and Accurate




# Analytical Error Precision and Accuracy

Precise and inaccurate
 Imprecise and inaccurate



Systematic Error (SE)



Random Error & SE

- Performance of analytical methods is typically monitored through analysis of specimens with known concentrations (i.e. controls) and followed by comparison of observed values with the known values
- The known values are usually represented by <u>interval</u> of acceptable values or <u>lower and upper control</u> <u>limits</u>
- These are INTERNAL quality control (QC) measures

#### **Purposes of IQC**

 "The main objective of internal quality control (IQC) is to ensure day-to-day consistency" (WHO 1981)

There are three purposes of IQC:

- 1. To monitor the accuracy and precision of the complete analytical process;
- 2. To detect immediate errors that occur due to test-system failure, adverse environmental conditions, and operator performance; and
- 3. To monitor over time the accuracy and precision of test performance that may be influenced by changes in test system performance and environmental conditions, and variance in operator performance

#### Control Materials

- Are specimens analysed for QC purposes
- Normally resemble the patient sample
  - Have same characteristics as patient sample such as matrix
- Can be purchased as:
  - <u>'assayed</u>' come with range of established values; more expensive
  - <u>'un-assayed</u>' the lab must use statistical measures to establish their range of values
- Generally supplied in lyophilized or freeze-dried forms; then reconstitute by adding distilled water/diluent solution
- Can be internally prepared: But???
- The control results of any run/analysis must be compared to the 'range of expected' results (established by .....who?) to determine acceptability of the analysis

#### **Quality Control (QC) Data:**

- Collection of QC data
  - For some tests/assays, control results are positive or negative (yes it worked, or no it did not)
  - For other tests, such as those that produce a digital data result which must be tabulated over a period of time and statistical analysis performed
    - Our focus is on this

Common statistical tools used in QC:

-Mean/average

-Standard deviation (SD)

$$SD = \sqrt{\frac{\sum \left(x - \overline{x}\right)^2}{(n-1)}}$$

-Coefficient of variation (CV)

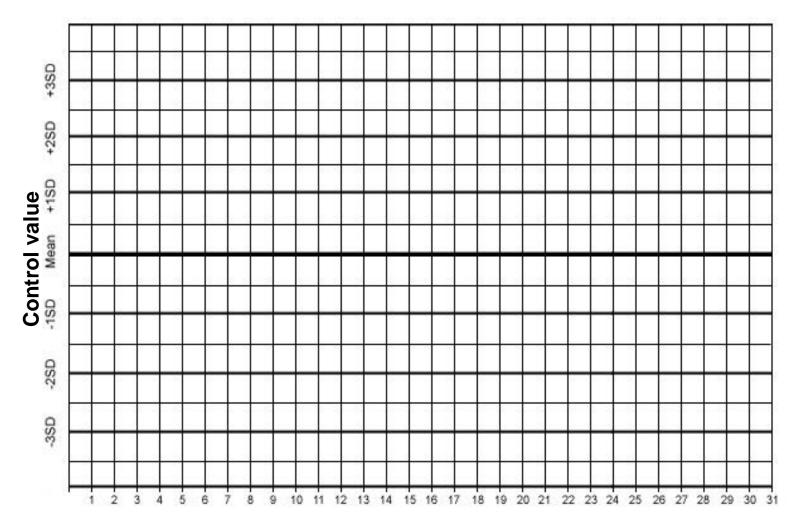
-CV% = <u>Standard deviation</u> X 100%

- Common statistical tools used in QC:
  - -Target/expected values of IQC
    - Find the mean of the QC data; and
    - Find the SD
    - Set the target or expected values
      - Mean±1SD, 2SD, 3SD

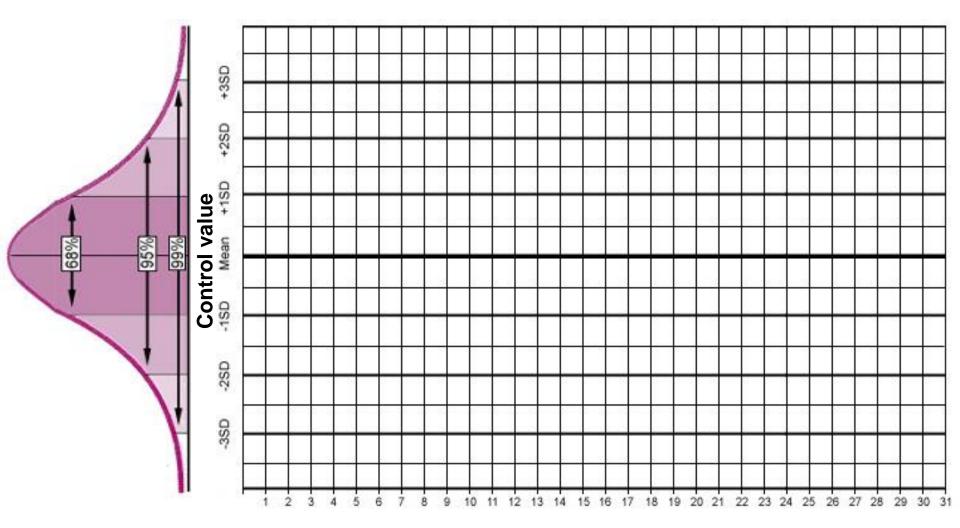
# So, how do we determine the range of acceptable QC results for the following QC data?

- Scenario: cholesterol assay
  - Mean of group of control values = 104 mg/dL
  - Standard Deviation = 5 mg/dL
  - Determine the target/acceptable/expected Range or control limits (lower and upper limits) using ± 2SD; (which will allow you to evaluate acceptability of performance of the control on subsequent days)
- Is a control value of 100 mg/dL acceptable? What about 120 mg/dL???
- The target/acceptable range is 94-114 mg/dl

### **Control Charts**

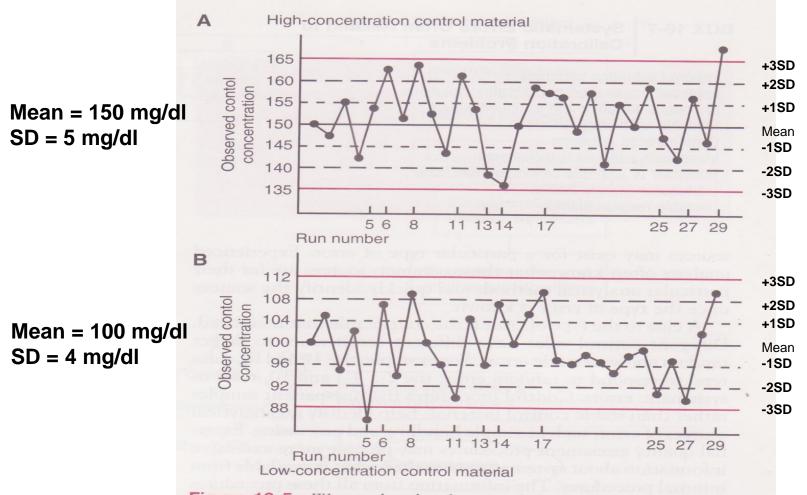

 Control charts are used to compare the observed control values with the control limits/expected control range

•Such charts provide visual display for a quick inspection and review


A common one is Levey-Jennings Control Chart

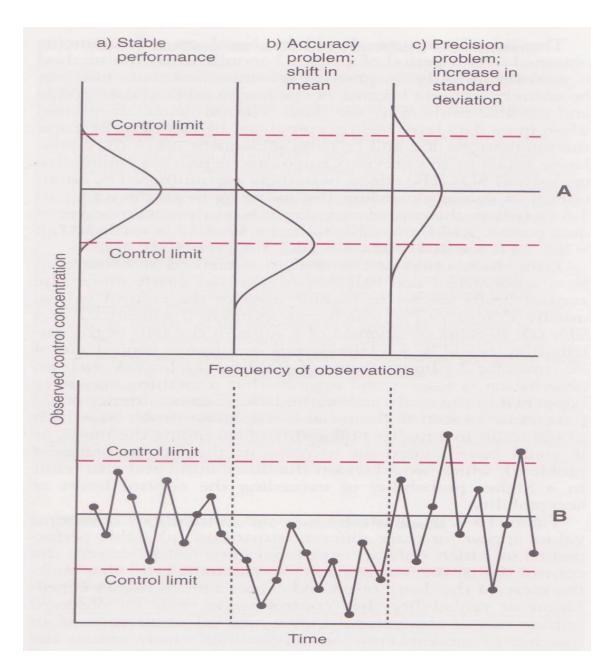
A Levey-Jennings control chart makes use of QC specimens/data and is developed in the following manner:-

- Run the IQC specimen for <u>at least 20 or more</u> and record down the values
- Calculate the <u>mean</u> and <u>standard deviations (SD)</u>
- Make a plot with the assay run on the x-axis, and control values on the y axis
- Draw the following lines across the y-axis: mean; -3, -2, -1, 1, 2, and 3 SD
- Plot the control results obtained for the IQC specimen for subsequent assay runs

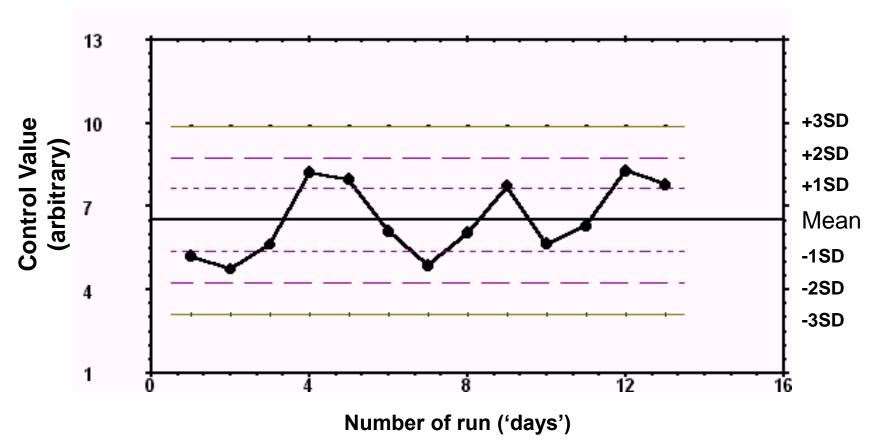



Number of run ('days')

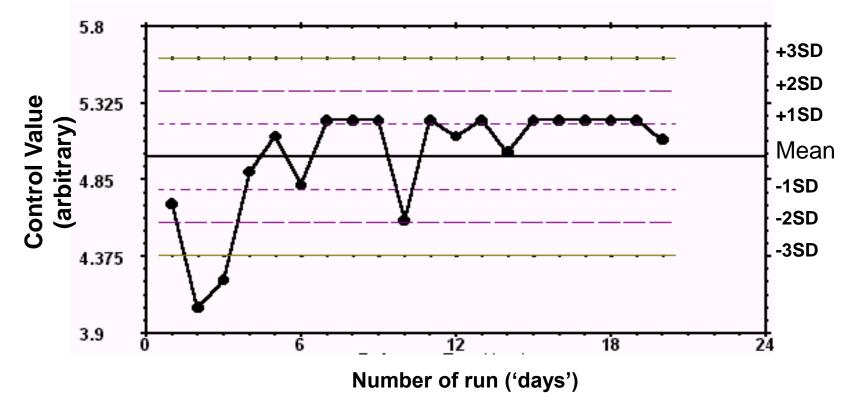



Number of run ('days')

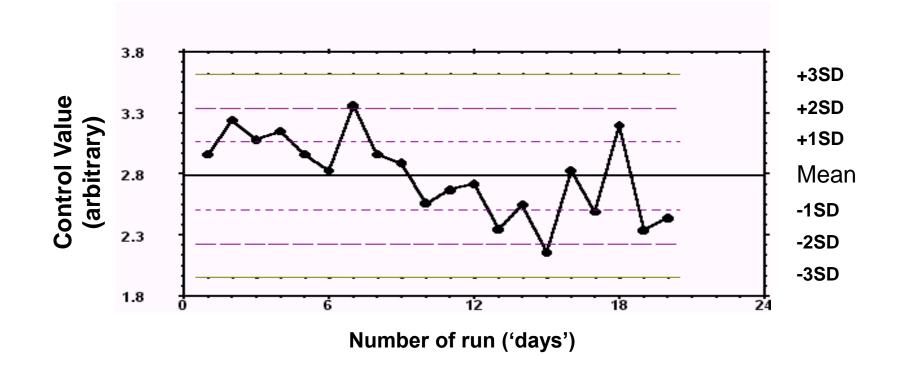
#### Example: Serum cholesterol (mg/dl)




**Figure 16-5** Westgard multirule control chart with control limits drawn at the mean  $\pm 1 s$ , 2 s, and 3 s. Concentration is plotted on the y-axis versus time (run number) on the x-axis. **A**, Chart for high-concentration control material. **B**, Chart for lowconcentration control material. s, Standard deviation. (From Westgard JO, Barry PL, Hunt MR, Groth T. A multi-rule Shewhart chart for quality control in clinical chemistry. Clin Chem 1981;27:493–501.)


#### Example




## What does the normal pattern look like? (random dispersion)



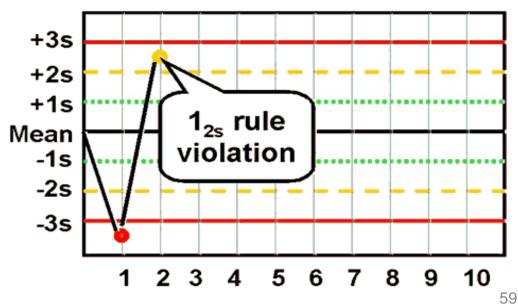
• **Shift** – when there are 6 or more consecutive data results on the same side of the mean



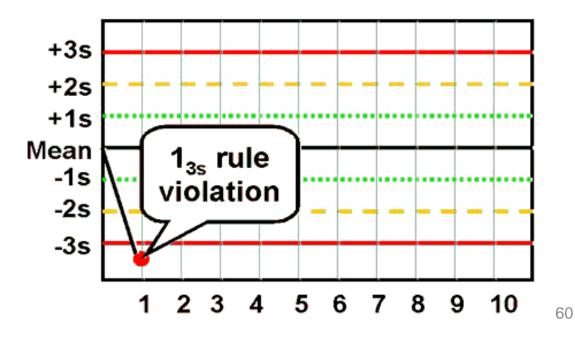
 Trend – when there is a consistent increase or decrease in the data points over a period of 6 or more days



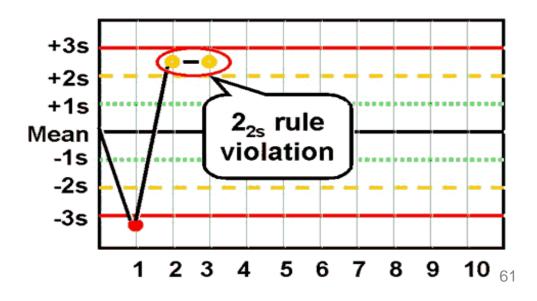
### Westgard Rules


- Statistical rules which guide in the <u>detection of both</u> random and systematic errors in QC data
- Established by James O. Westgard, PhD

– <u>http://www.westgard.com/mltirule.htm</u>



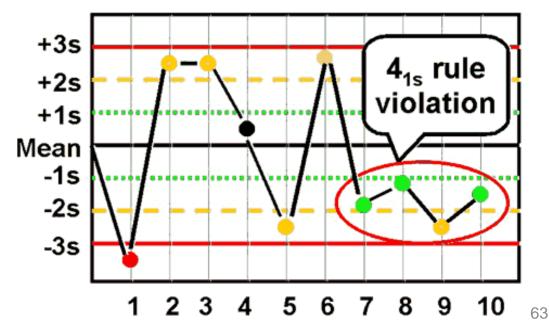

- The rules are applied when <u>two</u> (or more??) control materials are used
- The control rules are given symbols as A<sub>L</sub> or n<sub>L</sub>; where A is abbreviation for a statistic, n is the number of control observations, L refers to the control limits


- Common Westgard rules
  - 1<sub>2s</sub>
     A single control measurement exceeds two standard deviations from the target mean
  - Action must consider other rule violations
    - This is a warning

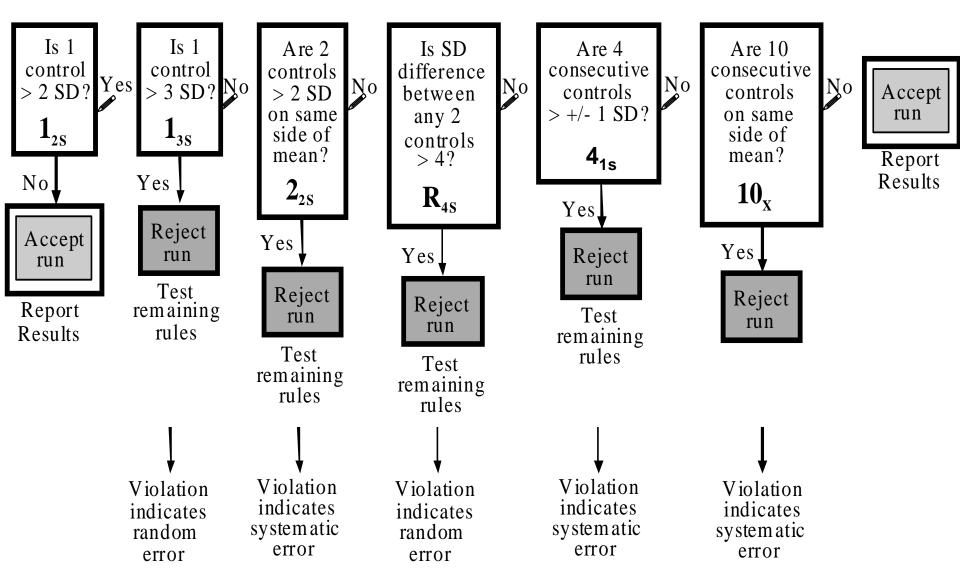


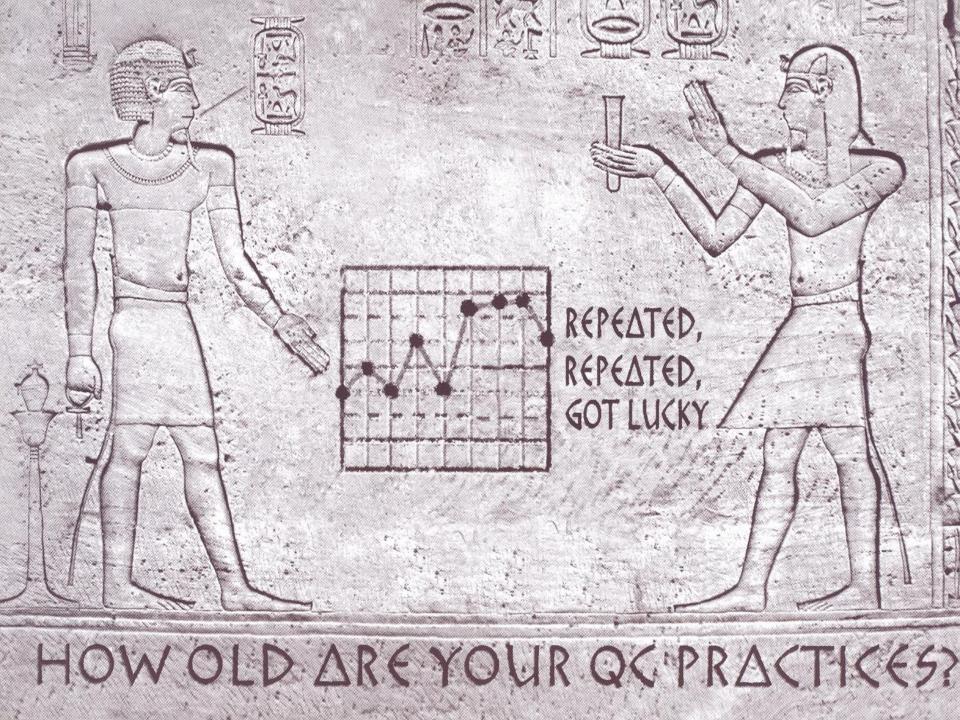
- Common Westgard rules
  - 1<sub>3s</sub>
    - A single control measurement exceeds three standard deviations from the target mean
    - Primarily sensitive to random errors
  - Action Reject




- Common Westgard rules
  - $-2_{2s}$ 
    - Two consecutive control measurements exceed the same mean plus 2S or the same mean minus 2S control limit
    - Primarily sensitive to systematic errors
  - Action Reject




- Common Westgard rules
  - $-R_{4s}$ 
    - One control measurement in a group exceeds the mean plus 2S and another exceeds the mean minus 2S
    - Primarily sensitive to random errors
  - Action Reject




- Common Westgard rules
  - 4<sub>1s</sub>
    - Four consecutive control measurements exceed the same mean plus 1S or the same mean minus 1S control limit
    - Sensitive to systematic errors
  - Action Reject



- Common Westgard rules
  - $-10_{x}$ 
    - Ten consecutive control observations falling on one side of the mean
    - Sensitive to systematic errors
  - Action Reject





# But what if your control specimen is "out of control?"

- "Out of control" means that there is too much dispersion in the control results (current) compared with the expected control range/limit
- This suggests that something is wrong with the process that generated that observation/result
- Patient test results cannot be reported to physicians when there is something wrong with the testing process that is generating results
- Remember ... No information is better than wrong information!!!!!

# But what if your control specimen is "out of control?"

Some Corrective Measures

| Things that can go Wrong                              | Corrective Action              |
|-------------------------------------------------------|--------------------------------|
| Instrument malfunction                                | Identify malfunction and fix   |
| Reagents: preparation, contamination, volume          | New reagents                   |
| Tech error                                            | Identify error and repeat test |
| Control sample/specimen is old or prepared improperly | Use new control                |

### How to implement an IQC programme

- 1. Establish written policies and procedures
- 2. Assign responsibility for monitoring and reviewing
- 3. Train staff
- 4. Obtain control materials
- 5. Collect data
- 6. Set target values (mean, SD)
- 7. Establish Levey-Jennings charts
- 8. Routinely plot control data
- 9. Establish and implement troubleshooting and corrective action protocols
- 10. Establish and maintain system for documentation

### **METHOD EVALUATION**

### **Method Selection**

- Before any new method is introduced into a lab both managerial and technical information must be compiled and carefully considered
- The information should be collected from different sources e.g. manufacturers, sales representatives, scientific presentation and scientific literature

### Managerial information to be considered

- Instrument cost
- Personnel requirement
- Instrument size (versus available space)
- Cost per test
- Sample volume
- Specimen types
- Environmental requirements

#### **Technical information to be considered**

- Analytical sensitivity or detection limit of the test (smallest concentration that can be accurately measured)
- Analytical specificity of the test (the ability to measure only the analyte of interest)
- Linear range or AMR (analytical measurement range) is an assessment of the lowest and highest levels at which an analyte can be accurately measured
- Interfering substances
- Estimation of imprecision and inaccuracy
- Reference Intervals (Normal values)

**NB: Reading assignment:** How is reference/normal range established?

#### **Summary: Selecting an Analytical Method**

- 1. The principle of the assay
- 2. The composition of reagents & reference materials, the quantity provided, & their storage
- 3. The stability of reagents & reference materials
- 4. Possible hazards, appropriate safety precautions
- 5. The type, quantity & disposal of waste
- 6. Specimen requirements collection, volume, storage
- 7. Anticipated analytical performance accuracy, precision, range
- The reference interval derivation, values in health & disease
- 9. The detailed protocol for performing the test
- 10. The availability of technical support, supplies

#### **Method Evaluation**

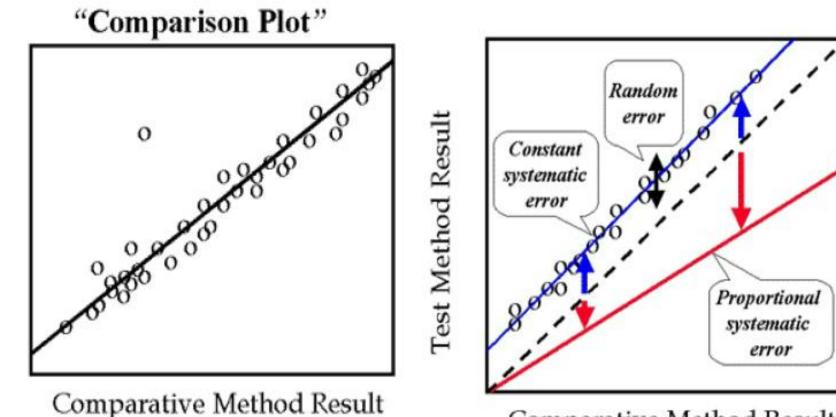
- Before any new method is introduced, an initial evaluation should be carried out
- The <u>imprecision</u> and <u>inaccuracy</u> are estimated and compared with the maximum allowable error for the test based on medical criteria or significance
- If the imprecision and inaccuracy exceed the maximum allowable error, the method is either rejected or modified and re-evaluated

#### **Estimation of imprecision**

- It involves the repeated estimation of the concentration of aliquots of a given sample over a period of at least 20 days (replication experiment)
- The control material should span a clinically meaningful range of concentrations (normal or abnormal)
- When the imprecision data are generated, the mean, standard deviation and coefficient of variation are calculated

# Estimation of imprecision (cont.)

- Two main types:
  - within run: imprecision within one run is indicated by the standard deviation of the controls analyzed within one run
  - Between run: imprecision between runs
- The random error or imprecision of a test procedure is measured in terms of coefficient of variation (CV) and standard deviation (SD). The smaller the CV and SD, the better the precision


# Estimation of Inaccuracy (Bias)

- One way of estimating inaccuracy is by the comparison of methods technique/ experiment
- This involves the estimation of a given analyte using both the <u>test method</u> and a <u>comparative</u> <u>method</u>
- It is recommended that at least 40 and preferably 100 samples should be estimated by both methods

# Estimation of Inaccuracy (Bias)

- Duplicates of each sample should be analyzed by both methods
- The analyses by both methods should be performed on the same day, preferably within 4 hours
- A graph of the test method data (y-axis) versus the comparative method (x-axis) allows visualization of method comparison

# Correlation/Comparison Plot

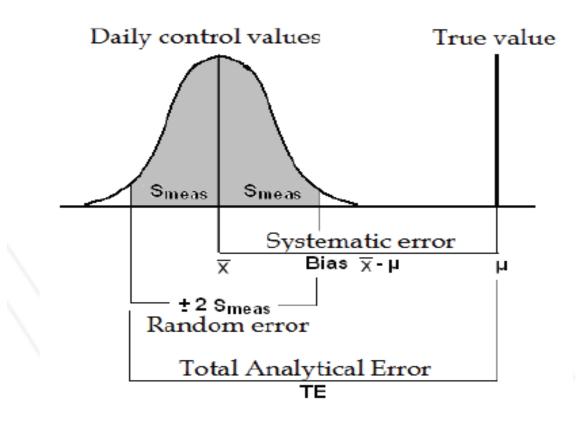


Test Method Result

Comparative Method Result

### Estimation of Inaccuracy (Bias) (cont.)

- Find the bias: it is the difference between the averages by the two methods, which is also the same as the average difference for all the specimens analyzed by the two methods
- It provides an estimate of the systematic error or average difference that is expected between the methods
- Thus, the smaller the bias, the smaller the systematic error, and the better the agreement/accuracy


### **Total Analytical Error**

• Total error:

– Sum of random plus systematic errors

 If the total error exceeds the maximum allowable error, the method is either rejected or modified and re-evaluated

#### **Total Analytical Error**



#### References

- Burtis CA, Ashwood ER and Bruns DE (2008). Tietz Fundamentals of clinical chemistry. Sixth edition. Saunders & Elsevier: USA. Pages 201-262.
- Bishop, M., Fody, E., & Schoeff, I. (2010). *Clinical Chemistry: Techniques, principles, Correlations.* Baltimore: Wolters Kluwer Lippincott Williams & Wilkins.